
Page 1

CS742 – Distributed & Parallel DBMS Page 4. 1 M. Tamer Özsu

Outline
n  Introduction & architectural issues
n Data distribution
n Distributed query processing
q Distributed query optimization
q Distributed transactions & concurrency control
q Distributed reliability
q Data replication
q Parallel database systems
q Database integration & querying
q Peer-to-Peer data management
q Stream data management
q MapReduce-based distributed data management

CS742 – Distributed & Parallel DBMS Page 4. 2 M. Tamer Özsu

Distributed Query
Processing Methodology

Calculus Query on Distributed
Relations

CONTROL
SITE

LOCAL
SITES

Query
Decomposition

Data
Localization

Algebraic Query on Distributed
Relations

Global
Optimization

Fragment Query

Local
Optimization

Optimized Fragment Query
with Communication Operations

Optimized Local
Queries

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

STATS ON
FRAGMENTS

LOCAL
SCHEMAS

Page 2

CS742 – Distributed & Parallel DBMS Page 4. 3 M. Tamer Özsu

Step 3 – Global Query
Optimization

Input: Fragment query
n Find the best (not necessarily optimal) global

schedule
l Minimize a cost function
l Distributed join processing

u Bushy vs. linear trees
u Which relation to ship where?
u Ship-whole vs ship-as-needed

l Decide on the use of semijoins
u Semijoin saves on communication at the expense of

more local processing.
l Join methods

u nested loop vs ordered joins (merge join or hash join)

CS742 – Distributed & Parallel DBMS Page 4. 4 M. Tamer Özsu

Cost-Based Optimization

n Solution space
l The set of equivalent algebra expressions (query trees).

n Cost function (in terms of time)
l  I/O cost + CPU cost + communication cost

l These might have different weights in different distributed
environments (LAN vs WAN).

l Can also maximize throughput

n Search algorithm
l How do we move inside the solution space?

l Exhaustive search, heuristic algorithms (iterative
improvement, simulated annealing, genetic,…)

Page 3

CS742 – Distributed & Parallel DBMS Page 4. 5 M. Tamer Özsu

Query Optimization Process

Search Space
Generation

Search
Strategy

Equivalent QEP

Input Query

Transformation
Rules

Cost Model

Best QEP

CS742 – Distributed & Parallel DBMS Page 4. 6 M. Tamer Özsu

Search Space
n Search space

characterized by
alternative execution

n Focus on join trees
n For N relations, there are

O(N!) equivalent join
trees that can be obtained
by applying
commutativity and
associativity rules
SELECT ENAME,RESP
FROM EMP, ASG,PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO

PROJ

ASG EMP

PROJ ASG

EMP

PROJ

ASG

EMP

× 	

▷◁ PNO

▷◁ ENO

▷◁ PNO

▷◁ ENO

▷◁ ENO,PNO

Page 4

CS742 – Distributed & Parallel DBMS Page 4. 7 M. Tamer Özsu

Search Space

n Restrict by means of heuristics
º Perform unary operations before binary operations
º …

n Restrict the shape of the join tree
l Consider only linear trees, ignore bushy ones

Linear Join Tree Bushy Join Tree

R2 R1

R3

R4

R2 R1 R4 R3

⋈

⋈

⋈

⋈

⋈ ⋈

CS742 – Distributed & Parallel DBMS Page 4. 8 M. Tamer Özsu

Search Strategy

n How to “move” in the search space.
n Deterministic

º Start from base relations and build plans by adding one
relation at each step

º Dynamic programming: breadth-first
º Greedy: depth-first

n Randomized
º Search for optimalities around a particular starting point
º Trade optimization time for execution time
º Better when > 10 relations
º Simulated annealing
º Iterative improvement

Page 5

CS742 – Distributed & Parallel DBMS Page 4. 9 M. Tamer Özsu

Search Strategies

n Deterministic

R2 R1

R3

R4

R2 R1 R2 R1

R3

R2 R1

R3

R3 R1

R2

⋈ ⋈

⋈

⋈

⋈

⋈

⋈

⋈ ⋈

⋈
n Randomized

CS742 – Distributed & Parallel DBMS Page 4. 10 M. Tamer Özsu

Cost Functions

n Total Time (or Total Cost)
l Reduce each cost (in terms of time) component individually

l Do as little of each cost component as possible

l Optimizes the utilization of the resources

Increases system throughput

n Response Time
l Do as many things as possible in parallel

l May increase total time because of increased total activity

Page 6

CS742 – Distributed & Parallel DBMS Page 4. 11 M. Tamer Özsu

Total Cost

Summation of all cost factors

Total cost = CPU cost + I/O cost + communication cost

CPU cost = unit instruction cost * no.of instructions

I/O cost = unit disk I/O cost * no. of disk I/Os

communication cost = message initiation + transmission

CS742 – Distributed & Parallel DBMS Page 4. 12 M. Tamer Özsu

Total Cost Factors

n Wide area network

l Message initiation and transmission costs high

l Local processing cost is low (fast mainframes or
minicomputers)

l Ratio of communication to I/O costs = 20:1

n Local area networks

l Communication and local processing costs are more
or less equal

l Ratio = 1:1.6

Page 7

CS742 – Distributed & Parallel DBMS Page 4. 13 M. Tamer Özsu

Response Time

Elapsed time between the initiation and the
completion of a query

Response time = CPU time + I/O time +
communication time

CPU time = unit instruction time * no. of
sequential instructions

I/O time = unit I/O time * no. of sequential I/Os

communication time = unit msg initiation time * no. of
sequential msg

 + unit transmission time * no. of
sequential bytes

CS742 – Distributed & Parallel DBMS Page 4. 14 M. Tamer Özsu

Example

Assume that only the communication cost is considered
Total time = 2 ⋅ message initialization time + unit transmission time *
(x+y)
Response time = max {time to send x from 1 to 3, time to send y from 2
to 3}
time to send x from 1 to 3 = message initialization time

 + unit transmission time * x
time to send y from 2 to 3 = message initialization time

 + unit transmission time * y

Site 1

Site 2

x units

y units

Site 3

Page 8

CS742 – Distributed & Parallel DBMS Page 4. 15 M. Tamer Özsu

Optimization Statistics

n Primary cost factor: size of intermediate
relations
l Need to estimate their sizes

n Make them precise èmore costly to maintain
n Simplifying assumption: uniform distribution

of attribute values in a relation

CS742 – Distributed & Parallel DBMS Page 4. 16 M. Tamer Özsu

Statistics

n For each relation R[A1, A2, …, An] fragmented as R1,
…, Rr
l  length of each attribute: length(Ai)
l  the number of distinct values for each attribute in each fragment:

card(ΠAi
Rj)

l maximum and minimum values in the domain of each attribute:
min(Ai), max(Ai)

l  the cardinalities of each domain: card(dom[Ai])

n The cardinalities of each fragment: card(Rj) Selectivity
factor of each operation for relations
l For joins

SF ⋈ (R,S) =
card(R ⋈S)

card(R) * card(S)

Page 9

CS742 – Distributed & Parallel DBMS Page 4. 17 M. Tamer Özsu

Intermediate Relation Sizes

Selection
size(R) = card(R) ⋅ length(R)
card(σF(R)) = SFσ(F) ⋅ card(R)

where

S Fσ(A = value) =
card(∏A(R))

1

S Fσ(A >value) =
max(A) – min(A)

max(A) – value

S Fσ(A <value) =
max(A) – min(A)
value – max(A)

SFσ(p(Ai)∧ p(Aj)) = SFσ(p(Ai)) ⋅ SFσ(p(Aj))

SFσ(p(Ai) ∨ p(Aj)) = SFσ(p(Ai)) + SFσ(p(Aj)) – (SFσ(p(Ai)) ⋅ SFσ(p(Aj)))

SFσ(A∈{value}) = SFσ(A= value) * card({values})

CS742 – Distributed & Parallel DBMS Page 4. 18 M. Tamer Özsu

Intermediate Relation Sizes

Projection
card(ΠA(R))=card(R)

Cartesian Product
card(R × S) = card(R) * card(S)

Union
 upper bound: card(R ∪ S) = card(R) + card(S)

 lower bound: card(R ∪ S) = max{card(R), card(S)}

Set Difference
 upper bound: card(R–S) = card(R)

 lower bound: 0

Page 10

CS742 – Distributed & Parallel DBMS Page 4. 19 M. Tamer Özsu

Intermediate Relation Size

Join
l  Special case: A is a key of R and B is a foreign key of S

 card(R ⋈A=B S) = card(S)

l  More general:
card(R ⋈ S) = SF⋈ * card(R) ⋅ card(S)

Semijoin

 card(R ⋉A S) = SF⋉(S.A) * card(R)

 where

 SF⋉(R ⋉A S)= SF⋉(S.A) =
card(∏A(S))

card(dom[A])

CS742 – Distributed & Parallel DBMS Page 4. 20 M. Tamer Özsu

Histograms for Selectivity
Estimation
n For skewed data, the uniform distribution assumption

of attribute values yields inaccurate estimations
n Use an histogram for each skewed attribute A

l Histogram = set of buckets

u Each bucket describes a range of values of A, with its average
frequency f (number of tuples with A in that range) and number
of distinct values d

u Buckets can be adjusted to different ranges

n Examples
l Equality predicate

u With (value in Rangei), we have: SFσ(A = value) = 1/di

l Range predicate

u Requires identifying relevant buckets and summing up their
frequencies

Page 11

CS742 – Distributed & Parallel DBMS Page 4. 21 M. Tamer Özsu

Histogram Example

For ASG.DUR=18: we have SF=1/12 so the card of selection is 300/12
= 25 tuples

For ASG.DUR≤18: we have min(range3)=12 and max(range3)=24 so
the card. of selection is 100+75+(((18−12)/(24 − 12))*50) = 200 tuples

CS742 – Distributed & Parallel DBMS Page 4. 22 M. Tamer Özsu

Centralized Query Optimization

n Dynamic (Ingres project at UCB)
l  Interpretive

n Static (System R project at IBM)

l Exhaustive search

n Hybrid (Volcano project at OGI)

l Choose node within plan

Page 12

CS742 – Distributed & Parallel DBMS Page 4. 23 M. Tamer Özsu

Dynamic Algorithm

� Decompose each multi-variable query into a
sequence of mono-variable queries with a
common variable

� Process each by a one variable query processor
l Choose an initial execution plan (heuristics)

l Order the rest by considering intermediate relation sizes

	

No statistical information is maintained

CS742 – Distributed & Parallel DBMS Page 4. 24 M. Tamer Özsu

Dynamic Algorithm–Decomposition

n Replace an n variable query q by a series of
queries
 q1→q2 → … → qn
 where qi uses the result of qi-1.

n Detachment
l Query q decomposed into q' → q" where q' and q" have a

common variable which is the result of q'

n Tuple substitution
l Replace the value of each tuple with actual values and

simplify the query
q(V1, V2, ... Vn) → (q' (t1, V2, V2, ... , Vn), t1∈R)

Page 13

CS742 – Distributed & Parallel DBMS Page 4. 25 M. Tamer Özsu

Detachment

q: SELECT V2.A2,V3.A3, …,Vn.An
 FROM R1 V1, …,Rn Vn
 WHERE P1(V1.A1’)AND P2(V1.A1,V2.A2,…, Vn.An)

 ⇓	

q': SELECT V1.A1 INTO R1'
 FROM R1 V1
 WHERE P1(V1.A1)

q": SELECT V2.A2, …,Vn.An
 FROM R1' V1, R2 V2, …,Rn Vn
 WHERE P2(V1.A1, V2.A2, …,Vn.An)

CS742 – Distributed & Parallel DBMS Page 4. 26 M. Tamer Özsu

Detachment Example

Names of employees working on CAD/CAM project
q1: SELECT EMP.ENAME
 FROM EMP, ASG, PROJ
 WHERE EMP.ENO=ASG.ENO
 AND ASG.PNO=PROJ.PNO
 AND PROJ.PNAME="CAD/CAM"

	
 	
 	
⇓	

q11: SELECT PROJ.PNO INTO JVAR
 FROM PROJ
 WHERE PROJ.PNAME="CAD/CAM"

q': SELECT EMP.ENAME
 FROM EMP,ASG,JVAR
 WHERE EMP.ENO=ASG.ENO
 AND ASG.PNO=JVAR.PNO

Page 14

CS742 – Distributed & Parallel DBMS Page 4. 27 M. Tamer Özsu

Detachment Example (cont’d)

q': SELECT EMP.ENAME
 FROM EMP,ASG,JVAR
 WHERE EMP.ENO=ASG.ENO

 AND ASG.PNO=JVAR.PNO

	
 	
 	
⇓	

q12: SELECT ASG.ENO INTO GVAR
 FROM ASG,JVAR
 WHERE ASG.PNO=JVAR.PNO

q13: SELECT EMP.ENAME

 FROM EMP,GVAR
 WHERE EMP.ENO=GVAR.ENO

CS742 – Distributed & Parallel DBMS Page 4. 28 M. Tamer Özsu

Tuple Substitution

q11 is a mono-variable query
q12 and q13 is subject to tuple substitution
Assume GVAR has two tuples only: 〈E1〉 and 〈E2〉
Then q13 becomes

q131: SELECT EMP.ENAME
 FROM EMP
 WHERE EMP.ENO="E1"

q132: SELECT EMP.ENAME
 FROM EMP
 WHERE EMP.ENO="E2"

Page 15

CS742 – Distributed & Parallel DBMS Page 4. 29 M. Tamer Özsu

Static Algorithm

� Simple (i.e., mono-relation) queries are
executed according to the best access path

� Execute joins

l Determine the possible ordering of joins

l Determine the cost of each ordering

l Choose the join ordering with minimal cost

CS742 – Distributed & Parallel DBMS Page 4. 30 M. Tamer Özsu

Static Algorithm

For joins, two alternative algorithms :
n Nested loops

for each tuple of external relation (cardinality n1)
 for each tuple of internal relation (cardinality n2)
 join two tuples if the join predicate is true
 end

end
l Complexity: n1* n2

n Merge join
sort relations
merge relations

l Complexity: n1+ n2 if relations are previously sorted and
equijoin

Page 16

CS742 – Distributed & Parallel DBMS Page 4. 31 M. Tamer Özsu

Static Algorithm – Example

Names of employees working on the CAD/CAM
project

Assume
l EMP has an index on ENO,
l ASG has an index on PNO,
l PROJ has an index on PNO and an index on PNAME

PNO ENO

PROJ

ASG

EMP

CS742 – Distributed & Parallel DBMS Page 4. 32 M. Tamer Özsu

Example (cont’d)

� Choose the best access paths to each relation
l EMP: sequential scan (no selection on EMP)
l ASG: sequential scan (no selection on ASG)
l PROJ: index on PNAME (there is a selection on PROJ based on

PNAME)

� Determine the best join ordering
l EMP ▷◁ ASG ▷◁ PROJ
l ASG ▷◁ PROJ ▷◁ EMP
l PROJ ▷◁ ASG ▷◁ EMP
l ASG ▷◁ EMP ▷◁ PROJ
l EMP × PROJ ▷◁ ASG
l PRO × JEMP ▷◁ ASG
l Select the best ordering based on the join costs evaluated according to

the two methods

Page 17

CS742 – Distributed & Parallel DBMS Page 4. 33 M. Tamer Özsu

Static Algorithm

Best total join order is one of
((ASG ⋈ EMP) ⋈ PROJ)

((PROJ ⋈ ASG) ⋈ EMP)

ASG EMP PROJ

EMP × PROJ
pruned

PROJ × EMP
pruned

Alternatives

EMP ⋈ ASG
pruned

(ASG ⋈ EMP) ⋈ PROJ

ASG ⋈ EMP

ASG ⋈ PROJ
pruned

PROJ ⋈ ASG

(PROJ ⋈ ASG) ⋈ EMP

CS742 – Distributed & Parallel DBMS Page 4. 34 M. Tamer Özsu

Static Algorithm

n ((PROJ ⋈ ASG) ⋈ EMP) has a useful index on
the select attribute and direct access to the join
attributes of ASG and EMP

n Therefore, chose it with the following access
methods:

l  select PROJ using index on PNAME

l  then join with ASG using index on PNO

l  then join with EMP using index on ENO

Page 18

CS742 – Distributed & Parallel DBMS Page 4. 35 M. Tamer Özsu

Hybrid optimization

n In general, static optimization is more efficient
than dynamic optimization
l Adopted by all commercial DBMS

n But even with a sophisticated cost model (with
histograms), accurate cost prediction is difficult

n Example
l Consider a parametric query with predicate
 WHERE R.A = $a /* $a is a parameter
l The only possible assumption at compile time is uniform

distribution of values

n Solution: Hybrid optimization
l Choose-plan done at runtime, based on the actual

parameter binding

CS742 – Distributed & Parallel DBMS Page 4. 36 M. Tamer Özsu

Hybrid Optimization
Example

$a=A

$a=A

Page 19

CS742 – Distributed & Parallel DBMS Page 4. 37 M. Tamer Özsu

Join Ordering in Fragment
Queries

n Ordering joins

l Distributed INGRES

l System R*

l Two-step

n Semijoin ordering

l SDD-1

CS742 – Distributed & Parallel DBMS Page 4. 38 M. Tamer Özsu

Join Ordering

n Multiple relations more difficult because too many
alternatives.
l Compute the cost of all alternatives and select the best one.

u Necessary to compute the size of intermediate relations which is
difficult.

l Use heuristics

R

if size(R) < size(S)

if size(R) > size(S)

S

• Consider two relations only

Page 20

CS742 – Distributed & Parallel DBMS Page 4. 39 M. Tamer Özsu

Join Ordering – Example

Consider
PROJ ⋈PNO ASG ⋈ENO EMP

Site 2

Site 3 Site 1

PNO ENO

PROJ

ASG

EMP

CS742 – Distributed & Parallel DBMS Page 4. 40 M. Tamer Özsu

Join Ordering – Example
Execution alternatives:
1. EMP→ Site 2 2. ASG → Site 1

 Site 2 computes EMP'=EMP ⋈ ASG Site 1 computes EMP'=EMP ⋈ ASG
 EMP'→ Site 3 EMP' → Site 3

 Site 3 computes EMP' ⋈ PROJ Site 3 computes EMP’ ⋈ PROJ

3. ASG → Site 3 4. PROJ → Site 2

 Site 3 computes ASG'=ASG ⋈ PROJ Site 2 computes PROJ'=PROJ ⋈ ASG
 ASG' → Site 1 PROJ' → Site 1

 Site 1 computes ASG' ▷◁ EMP Site 1 computes PROJ' ⋈ EMP

5. EMP → Site 2

 PROJ → Site 2

 Site 2 computes EMP ⋈ PROJ ⋈ ASG

Page 21

CS742 – Distributed & Parallel DBMS Page 4. 41 M. Tamer Özsu

Semijoin Algorithms

n Consider the join of two relations:
l  R[A] (located at site 1)
l  S[A](located at site 2)

n Alternatives:

1.  Do the join R ⋈AS

2.  Perform one of the semijoin equivalents

 R ⋈AS ⇔ 	
(R ⋉AS) ⋈AS

	
 	
 	
⇔ 	
R ⋈A (S ⋉A R)

	
 	
 	
⇔ 	
(R ⋉A S) ⋈A (S ⋉A R)

CS742 – Distributed & Parallel DBMS Page 4. 42 M. Tamer Özsu

Semijoin Algorithms

n Perform the join
l send R to Site 2

l Site 2 computes R ⋈A S

n Consider semijoin (R ⋉AS) ⋈AS
l S' = ΠA(S)

l S' → Site 1

l Site 1 computes R' = R ⋉AS'

l R'→ Site 2

l Site 2 computes R' ⋈AS

Semijoin is better if
size(ΠA(S)) + size(R ⋉AS)) < size(R)

Page 22

CS742 – Distributed & Parallel DBMS Page 4. 43 M. Tamer Özsu

Distributed Dynamic
Algorithm

1.  Execute all monorelation queries (e.g.,
selection, projection)

2.  Reduce the multirelation query to produce
irreducible subqueries
 q1→ q2 → … → qnsuch that there is only one
relation between qi and qi+1

1.  Choose qi involving the smallest fragments to
execute (call MRQ')

2.  Find the best execution strategy for MRQ'
a)  Determine processing site
b)  Determine fragments to move

3.  Repeat 3 and 4

CS742 – Distributed & Parallel DBMS Page 4. 44 M. Tamer Özsu

Static Approach

n Cost function includes local processing as well
as transmission

n Considers only joins

n “Exhaustive” search

n Compilation

n Published papers provide solutions to handling
horizontal and vertical fragmentations but the
implemented prototype does not

Page 23

CS742 – Distributed & Parallel DBMS Page 4. 45 M. Tamer Özsu

Static Approach –
Performing Joins

n Ship whole
l Larger data transfer
l Smaller number of messages
l Better if relations are small

n Fetch as needed
l Number of messages = O(cardinality of external

relation)
l Data transfer per message is minimal
l Better if relations are large and the selectivity is

good

CS742 – Distributed & Parallel DBMS Page 4. 46 M. Tamer Özsu

Static Approach –
Vertical Partitioning & Joins

1. Move outer relation tuples to the site of the inner
relation

(a) Retrieve outer tuples

(b) Send them to the inner relation site

(c) Join them as they arrive

Total Cost = cost(retrieving qualified outer tuples)

+ no. of outer tuples fetched *

cost(retrieving qualified inner tuples)

+ msg. cost * (no. outer tuples fetched * avg.

outer tuple size)/msg. size

Page 24

CS742 – Distributed & Parallel DBMS Page 4. 47 M. Tamer Özsu

Static Approach –
Vertical Partitioning & Joins

2. Move inner relation to the site of outer relation

Cannot join as they arrive; they need to be stored

Total cost = cost(retrieving qualified outer tuples)

+ no. of outer tuples fetched *

cost(retrieving matching inner tuples

from temporary storage)

+ cost(retrieving qualified inner tuples)

+ cost(storing all qualified inner tuples in

temporary storage)

+ msg. cost * no. of inner tuples fetched *

avg. inner tuple size/msg. size

CS742 – Distributed & Parallel DBMS Page 4. 48 M. Tamer Özsu

Static Approach –
Vertical Partitioning & Joins

3. Move both inner and outer relations to another site

Total cost = cost(retrieving qualified outer tuples)

+ cost(retrieving qualified inner tuples)

+ cost(storing inner tuples in storage)

+ msg. cost ⋅ (no. of outer tuples fetched *

avg. outer tuple size)/msg. size

+ msg. cost * (no. of inner tuples fetched *

avg. inner tuple size)/msg. size

+ no. of outer tuples fetched * cost(retrieving

inner tuples from temporary storage)

Page 25

CS742 – Distributed & Parallel DBMS Page 4. 49 M. Tamer Özsu

Static Approach –
Vertical Partitioning & Joins

4.Fetch inner tuples as needed
(a) Retrieve qualified tuples at outer relation site
(b) Send request containing join column value(s) for outer tuples to

inner relation site
(c) Retrieve matching inner tuples at inner relation site
(d) Send the matching inner tuples to outer relation site
(e) Join as they arrive

Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost * (no. of outer tuples fetched)
+ no. of outer tuples fetched * no. of

 inner tuples fetched * avg. inner tuple
 size * msg. cost / msg. size)

+ no. of outer tuples fetched * cost(retrieving
matching inner tuples for one outer value)

CS742 – Distributed & Parallel DBMS Page 4. 50 M. Tamer Özsu

Dynamic vs. Static vs Semijoin

n Semijoin
l SDD1 selects only locally optimal schedules

n Dynamic and static approaches have the same
advantages and drawbacks as in centralized
case
l But the problems of accurate cost estimation at compile-

time are more severe
u More variations at runtime
u Relations may be replicated, making site and copy

selection important

n Hybrid optimization
l Choose-plan approach can be used
l 2-step approach simpler

Page 26

CS742 – Distributed & Parallel DBMS Page 4. 51 M. Tamer Özsu

2-Step Optimization

1.  At compile time, generate a static plan with
operation ordering and access methods only

2.  At startup time, carry out site and copy
selection and allocate operations to sites

CS742 – Distributed & Parallel DBMS Page 4. 52 M. Tamer Özsu

2-Step – Problem Definition

n Given
l A set of sites S = {s1, s2, …,sn} with the load of each site
l A query Q ={q1, q2, q3, q4} such that each subquery qi is the

maximum processing unit that accesses one relation and
communicates with its neighboring queries

l For each qi in Q, a feasible allocation set of sites Sq={s1, s2,
…,sk} where each site stores a copy of the relation in qi

n The objective is to find an optimal allocation of
Q to S such that
l  the load unbalance of S is minimized
l The total communication cost is minimized

Page 27

CS742 – Distributed & Parallel DBMS Page 4. 53 M. Tamer Özsu

2-Step Algorithm

n  For each q in Q compute load (Sq)
n  While Q not empty do

1.  Select subquery a with least allocation flexibility
2.  Select best site b for a (with least load and best benefit)
3.  Remove a from Q and recompute loads if needed

CS742 – Distributed & Parallel DBMS Page 4. 54 M. Tamer Özsu

2-Step Algorithm Example

n Let Q = {q1, q2, q3, q4} where
q1 is associated with R1, q2 is
associated with R2 joined
with the result of q1, etc.

n  Iteration 1: select q4, allocate
to s1, set load(s1)=2

n  Iteration 2: select q2, allocate
to s2, set load(s2)=3

n  Iteration 3: select q3, allocate
to s1, set load(s1) =3

n  Iteration 4: select q1, allocate
to s3 or s4

Note: if in iteration 2, q2, were allocated to s4, this would have produced a
better plan. So hybrid optimization can still miss optimal plans

