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Outline 
n  Introduction & architectural issues 
n Data distribution 
n Distributed query processing 
q Distributed query optimization 
q Distributed transactions & concurrency control 
q Distributed reliability 
q Data replication 
q Parallel database systems 
q Database integration & querying 
q Peer-to-Peer data management 
q Stream data management 
q MapReduce-based distributed data management 
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Step 3 – Global Query 
Optimization 

Input:  Fragment query 
n Find the best (not necessarily optimal) global 

schedule 
l Minimize a cost function 
l Distributed join processing 

u Bushy vs. linear trees 
u Which relation to ship where? 
u Ship-whole vs ship-as-needed 

l Decide on the use of semijoins 
u Semijoin saves on communication at the expense of 

more local processing. 
l Join methods 

u nested loop vs ordered joins (merge join or hash join) 
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Cost-Based Optimization 

n Solution space 
l The set of equivalent algebra expressions (query trees). 

n Cost function (in terms of time)  
l  I/O cost + CPU cost + communication cost 

l These might have different weights in different distributed 
environments (LAN vs WAN). 

l Can also maximize throughput  

n Search algorithm 
l How do we move inside the solution space? 

l Exhaustive search, heuristic algorithms (iterative 
improvement, simulated annealing, genetic,…) 
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Search Space 
n Search space 

characterized by  
alternative execution  

n Focus on join trees 
n For N relations, there are 

O(N!) equivalent join 
trees that can be obtained 
by  applying 
commutativity and 
associativity rules 
SELECT  ENAME,RESP 
FROM  EMP, ASG,PROJ 
WHERE  EMP.ENO=ASG.ENO 
AND  ASG.PNO=PROJ.PNO 

PROJ 

ASG EMP 

PROJ ASG 

EMP 

PROJ 

ASG 

EMP 

× 	


▷◁ PNO 

▷◁ ENO 

▷◁ PNO 

▷◁ ENO 

▷◁ ENO,PNO 
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Search Space 

n Restrict by means of heuristics 
º Perform unary operations before binary operations 
º … 

n Restrict the shape of the join tree 
l Consider only linear trees, ignore bushy ones 

Linear Join Tree Bushy Join Tree 

R2 R1 

R3 

R4 

R2 R1 R4 R3 

⋈ 

⋈ 

⋈ 

⋈ 

⋈ ⋈ 
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Search Strategy 

n How to “move” in the search space. 
n Deterministic 

º Start from base relations and build plans by adding one 
relation at each step 

º Dynamic programming: breadth-first 
º Greedy: depth-first 

n Randomized 
º Search for optimalities around a particular starting point 
º Trade optimization time for execution time 
º Better when > 10 relations 
º Simulated annealing 
º Iterative improvement 
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Search Strategies 

n Deterministic 

R2 R1 

R3 

R4 

R2 R1 R2 R1 

R3 

R2 R1 

R3 

R3 R1 

R2 

⋈ ⋈ 

⋈ 

⋈ 

⋈ 

⋈ 

⋈ 

⋈ ⋈ 

⋈ 
n Randomized 
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Cost Functions 

n Total Time (or Total Cost) 
l Reduce each cost (in terms of time) component individually 

l Do as little of each cost component as possible 

l Optimizes the utilization of the resources 

 
Increases system throughput 

n Response Time 
l Do as many things as possible in parallel 

l May increase total time because of increased total activity 
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Total Cost 

Summation of all cost factors 
 

Total cost  = CPU cost + I/O cost + communication cost 
 
CPU cost  = unit instruction cost * no.of instructions 
 
I/O cost  = unit disk I/O cost * no. of disk I/Os 
 
communication cost = message initiation + transmission 
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Total Cost Factors 

n Wide area network  

l Message initiation and transmission costs high 

l Local processing cost is low (fast mainframes or 
minicomputers) 

l Ratio of communication to I/O costs = 20:1 

n Local area networks 

l Communication and local processing costs are more 
or less equal 

l Ratio = 1:1.6 
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Response Time 

Elapsed time between the initiation and the 
completion of a query 

Response time = CPU time + I/O time + 
communication time 

CPU time  = unit instruction time * no. of 
sequential instructions 

I/O time  = unit I/O time * no. of sequential I/Os 

communication time = unit msg initiation time * no. of 
sequential msg  

  + unit transmission time * no. of 
sequential bytes 
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Example 

Assume that only the communication cost is considered 
Total time = 2 ⋅ message initialization time + unit transmission time * 
(x+y) 
Response time = max {time to send x from 1 to 3, time to send y from 2 
to 3} 
time to send x from 1 to 3 = message initialization time  

     + unit transmission time * x 
time to send y from 2 to 3 = message initialization time  

     + unit transmission time * y 

Site 1 

Site 2 

x units 

y units 

Site 3 
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Optimization Statistics 

n Primary cost factor: size of intermediate 
relations 
l Need to estimate their sizes 

n Make them precise èmore costly to maintain 
n Simplifying assumption: uniform distribution 

of attribute values in a relation 
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Statistics 

n For each relation R[A1, A2, …, An] fragmented as R1, 
…, Rr 
l  length of each attribute: length(Ai)  
l  the number of distinct values for each attribute in each fragment: 

card(ΠAi
Rj) 

l maximum and minimum values in the domain of each attribute: 
min(Ai), max(Ai) 

l  the cardinalities of each domain: card(dom[Ai]) 

n The cardinalities of each fragment: card(Rj) Selectivity 
factor of each operation for relations 
l For joins 

SF ⋈ (R,S) = 
card(R ⋈S) 

card(R) * card(S) 
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Intermediate Relation Sizes 

Selection 
size(R) = card(R) ⋅ length(R) 
card(σF(R)) = SFσ(F) ⋅ card(R) 

where 

S Fσ(A = value) =  
card(∏A(R)) 

1 

S Fσ(A >value) =  
max(A) – min(A)  

max(A) – value 

S Fσ(A <value) =  
max(A) – min(A)  
value  – max(A) 

SFσ(p(Ai)∧ p(Aj)) = SFσ(p(Ai)) ⋅ SFσ(p(Aj)) 

SFσ(p(Ai) ∨ p(Aj)) = SFσ(p(Ai)) + SFσ(p(Aj)) – (SFσ(p(Ai)) ⋅ SFσ(p(Aj))) 

SFσ(A∈{value}) = SFσ(A= value) * card({values}) 
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Intermediate Relation Sizes 

Projection 
card(ΠA(R))=card(R) 

Cartesian Product 
card(R × S) = card(R) * card(S) 

Union 
 upper bound: card(R ∪ S) = card(R) + card(S) 

 lower bound: card(R ∪ S) = max{card(R), card(S)} 

Set Difference 
 upper bound: card(R–S) = card(R) 

 lower bound: 0 
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Intermediate Relation Size 

Join 
l  Special case: A is a key of R and B is a foreign key of S 

  card(R ⋈A=B S) = card(S) 

l  More general: 
card(R ⋈ S) = SF⋈ * card(R) ⋅ card(S) 

Semijoin 

   card(R ⋉A S) = SF⋉(S.A) * card(R) 

 where 

   SF⋉(R ⋉A S)= SF⋉(S.A) = 
card(∏A(S)) 

card(dom[A]) 
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Histograms for Selectivity 
Estimation 
n For skewed data, the uniform distribution assumption 

of attribute values yields inaccurate estimations 
n Use an histogram for each skewed attribute A 

l Histogram = set of buckets 

u Each bucket describes a range of values of A, with its average 
frequency f (number of tuples with A in that range) and number 
of distinct values d 

u Buckets can be adjusted to different ranges 

n Examples 
l Equality predicate 

u With (value in Rangei), we have: SFσ(A = value) = 1/di 

l Range predicate 

u Requires identifying relevant buckets and summing up their 
frequencies 
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Histogram Example 

For ASG.DUR=18: we have SF=1/12 so the card of selection is 300/12 
= 25 tuples 
 
For ASG.DUR≤18: we have min(range3)=12 and max(range3)=24 so 
the card. of selection is 100+75+(((18−12)/(24 − 12))*50) = 200 tuples 
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Centralized Query Optimization 

n Dynamic (Ingres project at UCB) 
l  Interpretive 

n Static (System R project at IBM) 

l Exhaustive search 

n Hybrid (Volcano project at OGI) 

l Choose node within plan 
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Dynamic Algorithm 

� Decompose each multi-variable query into a 
sequence of mono-variable queries with a 
common variable 

� Process each by a one variable query processor 
l Choose an initial execution plan (heuristics) 

l Order the rest by considering intermediate relation sizes 

	


  
No statistical information is maintained 
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Dynamic Algorithm–Decomposition 

n Replace an n variable query q by a series of 
queries 
   q1→q2 → … → qn 
 where qi uses the result of qi-1. 

n Detachment 
l Query q decomposed into q' → q" where q' and q" have a 

common variable which is the result of q' 

n Tuple substitution 
l Replace the value of each tuple with actual values and 

simplify the query 
q(V1, V2, ... Vn) → (q' (t1, V2, V2, ... , Vn), t1∈R) 
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Detachment 

q:  SELECT  V2.A2,V3.A3, …,Vn.An 
  FROM  R1 V1, …,Rn Vn 
  WHERE  P1(V1.A1’)AND P2(V1.A1,V2.A2,…, Vn.An) 

   ⇓	

q': SELECT  V1.A1 INTO R1' 
  FROM  R1 V1 
  WHERE  P1(V1.A1) 

 
q":  SELECT  V2.A2, …,Vn.An 
  FROM  R1' V1, R2 V2, …,Rn Vn 
  WHERE  P2(V1.A1, V2.A2, …,Vn.An) 
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Detachment Example 

Names of employees working on CAD/CAM project 
q1:  SELECT  EMP.ENAME 
  FROM  EMP, ASG, PROJ 
  WHERE  EMP.ENO=ASG.ENO  
  AND  ASG.PNO=PROJ.PNO 
  AND  PROJ.PNAME="CAD/CAM" 

	
 	
 	
⇓	

q11:  SELECT  PROJ.PNO INTO JVAR 
  FROM  PROJ 
  WHERE  PROJ.PNAME="CAD/CAM" 

 
q':  SELECT  EMP.ENAME 
  FROM  EMP,ASG,JVAR 
  WHERE  EMP.ENO=ASG.ENO 
  AND  ASG.PNO=JVAR.PNO 
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Detachment Example (cont’d) 

q':  SELECT  EMP.ENAME 
  FROM  EMP,ASG,JVAR 
  WHERE  EMP.ENO=ASG.ENO 

  AND  ASG.PNO=JVAR.PNO 

	
 	
 	
⇓	

q12:  SELECT  ASG.ENO INTO GVAR 
  FROM  ASG,JVAR 
  WHERE  ASG.PNO=JVAR.PNO 

 
q13:  SELECT  EMP.ENAME 

  FROM  EMP,GVAR 
  WHERE  EMP.ENO=GVAR.ENO 
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Tuple Substitution 

q11 is a mono-variable query 
q12  and q13 is subject to tuple substitution 
Assume GVAR has two tuples only: 〈E1〉 and 〈E2〉 
Then q13  becomes 

q131:  SELECT  EMP.ENAME 
  FROM  EMP 
  WHERE  EMP.ENO="E1" 

 
q132:  SELECT  EMP.ENAME 
  FROM  EMP 
  WHERE  EMP.ENO="E2" 
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Static Algorithm 

� Simple (i.e., mono-relation) queries are 
executed according to the best access path 

� Execute joins 

l Determine the possible ordering of joins 

l Determine the cost of each ordering 

l Choose the join ordering with minimal cost 
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Static Algorithm 

For  joins, two alternative algorithms : 
n Nested loops 

for each tuple of external relation (cardinality n1) 
 for each tuple of internal relation (cardinality n2) 
  join two tuples if the join predicate is true 
 end 

end 
l Complexity: n1* n2 

n Merge join 
sort relations  
merge relations 

l Complexity: n1+ n2 if relations are previously sorted and 
equijoin 
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Static Algorithm – Example 

Names of employees working on the CAD/CAM 
project 

Assume 
l EMP has an index on ENO, 
l ASG has an index on PNO, 
l PROJ has an index on PNO and an index on PNAME 

PNO ENO 

PROJ 

ASG 

EMP 
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Example (cont’d) 

� Choose the best access paths to each relation 
l EMP:  sequential scan (no selection on  EMP) 
l ASG:  sequential scan (no selection on  ASG) 
l PROJ:  index on PNAME (there is a  selection on PROJ based on 

PNAME) 

� Determine the best join ordering 
l EMP ▷◁ ASG ▷◁ PROJ 
l ASG ▷◁ PROJ ▷◁ EMP 
l PROJ ▷◁ ASG ▷◁ EMP 
l ASG ▷◁ EMP ▷◁ PROJ 
l EMP × PROJ ▷◁ ASG 
l PRO × JEMP ▷◁ ASG 
l Select the best ordering based on the join costs evaluated according to 

the two methods 
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Static Algorithm 

Best total join order is one of 
((ASG ⋈ EMP) ⋈ PROJ) 

((PROJ ⋈ ASG) ⋈ EMP) 

ASG EMP PROJ 

EMP × PROJ 
pruned 

PROJ × EMP 
pruned 

Alternatives 

EMP ⋈ ASG 
pruned 

(ASG ⋈ EMP) ⋈ PROJ  

ASG ⋈ EMP 
 

ASG ⋈ PROJ 
pruned 

PROJ ⋈ ASG 
 

(PROJ ⋈ ASG) ⋈ EMP  
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Static Algorithm 

n ((PROJ ⋈ ASG) ⋈ EMP) has a useful index on 
the select attribute and direct access to the join 
attributes of ASG and EMP 

n Therefore, chose it with the following access 
methods: 

l  select PROJ using index on PNAME 

l  then join with ASG using index on PNO 

l  then join with EMP using index on ENO 
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Hybrid optimization 

n In general, static optimization is more efficient 
than dynamic optimization 
l Adopted by all commercial DBMS 

n But even with a sophisticated cost model (with 
histograms), accurate cost prediction is difficult 

n Example 
l Consider a parametric query with predicate 
        WHERE R.A = $a        /* $a is a parameter 
l The only possible assumption at compile time is uniform 

distribution of values 

n Solution: Hybrid optimization 
l Choose-plan done at runtime, based on the actual 

parameter binding 
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Hybrid Optimization 
Example 

$a=A 

$a=A 
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Join Ordering in Fragment 
Queries 

n Ordering joins 

l Distributed INGRES 

l System R* 

l Two-step 

n Semijoin ordering 

l SDD-1 
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Join Ordering 

n Multiple relations more difficult because too many 
alternatives. 
l Compute the cost of all alternatives and select the best one. 

u Necessary to compute the size of intermediate relations which is 
difficult. 

l Use heuristics 

R 

if size(R) < size(S) 

if size(R) > size(S) 

S 

• Consider two relations only 
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Join Ordering – Example 

Consider 
PROJ ⋈PNO ASG ⋈ENO EMP 

Site 2 

Site 3 Site 1 

PNO ENO 

PROJ 

ASG 

EMP 
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Join Ordering – Example 
Execution alternatives: 
1. EMP→ Site 2  2. ASG → Site 1 

 Site 2 computes EMP'=EMP ⋈ ASG   Site 1 computes EMP'=EMP ⋈ ASG 
 EMP'→ Site 3   EMP' →  Site 3 

 Site 3 computes EMP' ⋈ PROJ   Site 3 computes EMP’ ⋈ PROJ 
 
3. ASG → Site 3  4. PROJ → Site 2 

 Site 3 computes ASG'=ASG ⋈ PROJ   Site 2 computes PROJ'=PROJ ⋈ ASG 
 ASG' →  Site 1   PROJ' → Site 1 

 Site 1 computes ASG' ▷◁ EMP   Site 1 computes PROJ' ⋈ EMP 
 
5. EMP →  Site 2 

 PROJ →  Site 2 

 Site 2 computes EMP ⋈ PROJ ⋈ ASG 
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Semijoin Algorithms 

n Consider the join of two relations:  
l  R[A]  (located at site 1) 
l  S[A](located at site 2) 

n Alternatives: 

1.  Do the join R ⋈AS 

2.  Perform one of the semijoin equivalents 

 R ⋈AS  ⇔ 	
(R ⋉AS) ⋈AS 

	
 	
 	
⇔ 	
R ⋈A (S ⋉A R) 

	
 	
 	
⇔ 	
(R ⋉A S) ⋈A (S ⋉A R) 
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Semijoin Algorithms 

n Perform the join 
l send R to Site 2 

l Site 2 computes R ⋈A S 

n Consider semijoin (R ⋉AS) ⋈AS 
l S' = ΠA(S) 

l S' → Site 1 

l Site 1 computes R' = R ⋉AS' 

l R'→ Site 2 

l Site 2 computes R' ⋈AS 

Semijoin is better if 
size(ΠA(S)) + size(R ⋉AS)) < size(R) 



Page 22 

CS742 – Distributed & Parallel DBMS Page 4. 43 M. Tamer Özsu 

Distributed Dynamic 
Algorithm 

1.  Execute all monorelation queries (e.g., 
selection, projection) 

2.  Reduce the multirelation query to produce 
irreducible subqueries  
 q1→ q2 → … → qnsuch that there is only one 
relation between qi and qi+1 

1.  Choose qi involving the smallest fragments to 
execute (call MRQ') 

2.  Find the best execution strategy for MRQ' 
a)  Determine processing site 
b)  Determine fragments to move 

3.  Repeat 3 and 4 
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Static Approach 

n Cost function includes local processing as well 
as transmission 

n Considers only joins 

n “Exhaustive” search 

n Compilation 

n Published papers provide solutions to handling 
horizontal and vertical fragmentations but the 
implemented prototype does not 
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Static Approach – 
Performing Joins 

n Ship whole 
l Larger data transfer 
l Smaller number of messages 
l Better if relations are small 

n Fetch as needed 
l Number of messages = O(cardinality of external 

relation) 
l Data transfer per message is minimal 
l Better if relations are large and the selectivity is 

good 
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Static Approach – 
Vertical Partitioning & Joins 

1.  Move outer relation tuples to the site of the inner 
relation 

(a) Retrieve outer tuples 

(b) Send them to the inner relation site 

(c) Join them as they arrive 

Total Cost =  cost(retrieving qualified outer tuples)  

+ no. of outer tuples fetched * 

cost(retrieving qualified inner tuples)  

+ msg. cost * (no. outer tuples fetched *  avg. 

outer tuple size)/msg. size 
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Static Approach – 
Vertical Partitioning & Joins 

2.  Move inner relation to the site of outer relation 

Cannot join as they arrive; they need to be stored 

Total cost  =  cost(retrieving qualified outer tuples) 

+ no. of outer tuples fetched * 

cost(retrieving matching inner tuples 

from temporary storage)  

+ cost(retrieving qualified inner tuples)  

+ cost(storing all qualified inner tuples in 

temporary storage)  

+ msg. cost * no. of inner tuples fetched * 

avg. inner tuple size/msg. size 
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Static Approach – 
Vertical Partitioning & Joins 

3.  Move both inner and outer relations to another site  

Total cost  =  cost(retrieving qualified outer tuples) 

+ cost(retrieving qualified inner tuples) 

+ cost(storing inner tuples in storage) 

+ msg. cost ⋅ (no. of outer tuples fetched * 

avg. outer tuple size)/msg. size    

+ msg. cost * (no. of inner tuples fetched * 

avg. inner tuple size)/msg. size  

+ no. of outer tuples fetched * cost(retrieving 

inner tuples from temporary storage) 
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Static Approach – 
Vertical Partitioning & Joins 

4.Fetch inner tuples as needed 
(a) Retrieve qualified tuples at outer relation site 
(b) Send request containing join column value(s) for outer tuples to 

inner relation site 
(c) Retrieve matching inner tuples at inner relation site 
(d) Send the matching inner tuples to outer relation site 
(e) Join as they arrive  

Total Cost =  cost(retrieving qualified outer tuples) 
+  msg. cost * (no. of outer tuples fetched) 
+  no. of outer tuples fetched * no. of   

  inner tuples fetched * avg. inner tuple  
  size * msg. cost / msg. size) 

+  no. of outer tuples fetched * cost(retrieving 
matching inner tuples for one outer value) 
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Dynamic vs. Static vs Semijoin 

n Semijoin 
l SDD1 selects only locally optimal schedules 

n Dynamic and static approaches have the same 
advantages and drawbacks as in centralized 
case 
l But the problems of accurate cost estimation at compile-

time are more severe 
u More variations at runtime 
u Relations may be replicated, making site and copy 

selection important 

n Hybrid optimization 
l Choose-plan approach can be used 
l 2-step approach simpler 
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2-Step Optimization 

1.  At compile time, generate a static plan with 
operation ordering and access methods only 

2.  At startup time, carry out site and copy 
selection and allocate operations to sites 
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2-Step – Problem Definition 

n Given 
l A set of sites S = {s1, s2, …,sn} with the load of each site 
l A query Q ={q1, q2, q3, q4}  such that each subquery qi is the 

maximum processing unit that accesses one relation and 
communicates with its neighboring queries 

l For each qi in Q, a feasible allocation set of sites Sq={s1, s2, 
…,sk} where each site stores a copy of the relation in qi 

n The objective is to find an optimal allocation of 
Q to S such that 
l  the load unbalance of S is minimized 
l The total communication cost is minimized 
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2-Step Algorithm 

n  For each q in Q compute load (Sq) 
n  While Q not empty do 

1.  Select subquery a with least allocation flexibility 
2.  Select best site b for a (with least load and best benefit) 
3.  Remove a from Q and recompute loads if needed 
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2-Step Algorithm Example 

n Let Q = {q1, q2, q3, q4} where 
q1 is associated with R1, q2 is 
associated with R2 joined 
with the result of q1, etc. 

n  Iteration 1: select q4, allocate 
to s1, set load(s1)=2 

n  Iteration 2: select q2, allocate 
to s2, set load(s2)=3 

n  Iteration 3: select q3, allocate 
to s1, set load(s1) =3 

n  Iteration 4: select q1, allocate 
to s3 or s4 

Note: if in iteration 2, q2, were allocated to s4, this would have produced a 
better plan. So hybrid optimization can still miss optimal plans 


